January 2037 lunar eclipse
Total eclipse | |||||||||||||||||
Date | January 31, 2037 | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Gamma | 0.3619 | ||||||||||||||||
Magnitude | 1.2086 | ||||||||||||||||
Saros cycle | 134 (28 of 73) | ||||||||||||||||
Totality | 63 minutes, 41 seconds | ||||||||||||||||
Partiality | 197 minutes, 28 seconds | ||||||||||||||||
Penumbral | 312 minutes, 6 seconds | ||||||||||||||||
| |||||||||||||||||
A total lunar eclipse will occur at the Moon’s ascending node of orbit on Saturday, January 31, 2037,[1] with an umbral magnitude of 1.2086. A lunar eclipse occurs when the Moon moves into the Earth's shadow, causing the Moon to be darkened. A total lunar eclipse occurs when the Moon's near side entirely passes into the Earth's umbral shadow. Unlike a solar eclipse, which can only be viewed from a relatively small area of the world, a lunar eclipse may be viewed from anywhere on the night side of Earth. A total lunar eclipse can last up to nearly two hours, while a total solar eclipse lasts only a few minutes at any given place, because the Moon's shadow is smaller. Occurring only about 12 hours before perigee (on February 1, 2037, at 2:00 UTC), the Moon's apparent diameter will be larger.[2]
This eclipse occurs during a supermoon and a blue moon (second full moon of month), of which the most recent occurrence was on January 31, 2018, one previous metonic cycle (19 years).
Visibility
The eclipse will be completely visible over east and northeast Asia, Australia, and northwestern North America, seen rising over west Asia, eastern Europe, and east Africa and setting over most of North America and the eastern Pacific Ocean.[3]
Eclipse details
Shown below is a table displaying details about this particular solar eclipse. It describes various parameters pertaining to this eclipse.[4]
Parameter | Value |
---|---|
Penumbral Magnitude | 2.18148 |
Umbral Magnitude | 1.20858 |
Gamma | 0.36190 |
Sun Right Ascension | 20h57m58.6s |
Sun Declination | -17°10'47.4" |
Sun Semi-Diameter | 16'14.0" |
Sun Equatorial Horizontal Parallax | 08.9" |
Moon Right Ascension | 08h58m15.6s |
Moon Declination | +17°32'34.5" |
Moon Semi-Diameter | 16'41.1" |
Moon Equatorial Horizontal Parallax | 1°01'14.2" |
ΔT | 77.5 s |
Eclipse season
This eclipse is part of an eclipse season, a period, roughly every six months, when eclipses occur. Only two (or occasionally three) eclipse seasons occur each year, and each season lasts about 35 days and repeats just short of six months (173 days) later; thus two full eclipse seasons always occur each year. Either two or three eclipses happen each eclipse season. In the sequence below, each eclipse is separated by a fortnight.
January 16 Descending node (new moon) |
January 31 Ascending node (full moon) |
---|---|
Partial solar eclipse Solar Saros 122 |
Total lunar eclipse Lunar Saros 134 |
Related eclipses
Eclipses in 2037
- A partial solar eclipse on January 16.
- A total lunar eclipse on January 31.
- A total solar eclipse on July 13.
- A partial lunar eclipse on July 27.
Metonic
- Preceded by: Lunar eclipse of April 14, 2033
- Followed by: Lunar eclipse of November 18, 2040
Tzolkinex
- Preceded by: Lunar eclipse of December 20, 2029
- Followed by: Lunar eclipse of March 13, 2044
Half-Saros
- Preceded by: Solar eclipse of January 26, 2028
- Followed by: Solar eclipse of February 5, 2046
Tritos
- Preceded by: Lunar eclipse of March 3, 2026
- Followed by: Lunar eclipse of January 1, 2048
Lunar Saros 134
- Preceded by: Lunar eclipse of January 21, 2019
- Followed by: Lunar eclipse of February 11, 2055
Inex
- Preceded by: Lunar eclipse of February 21, 2008
- Followed by: Lunar eclipse of January 11, 2066
Triad
- Preceded by: Lunar eclipse of April 2, 1950
- Followed by: Lunar eclipse of December 3, 2123
Lunar eclipses of 2035–2038
This eclipse is a member of a semester series. An eclipse in a semester series of lunar eclipses repeats approximately every 177 days and 4 hours (a semester) at alternating nodes of the Moon's orbit.[5]
The penumbral lunar eclipses on June 17, 2038 and December 11, 2038 occur in the next lunar year eclipse set.
Lunar eclipse series sets from 2035 to 2038 | ||||||||
---|---|---|---|---|---|---|---|---|
Ascending node | Descending node | |||||||
Saros | Date Viewing |
Type Chart |
Gamma | Saros | Date Viewing |
Type Chart |
Gamma | |
114 | 2035 Feb 22 |
Penumbral |
−1.0357 | 119 | 2035 Aug 19 |
Partial |
0.9433 | |
124 | 2036 Feb 11 |
Total |
−0.3110 | 129 | 2036 Aug 07 |
Total |
0.2004 | |
134 | 2037 Jan 31 |
Total |
0.3619 | 139 | 2037 Jul 27 |
Partial |
−0.5582 | |
144 | 2038 Jan 21 |
Penumbral |
1.0710 | 149 | 2038 Jul 16 |
Penumbral |
−1.2837 |
Saros 134
This eclipse is a part of Saros series 134, repeating every 18 years, 11 days, and containing 72 events. The series started with a penumbral lunar eclipse on April 1, 1550. It contains partial eclipses from July 7, 1694 through October 13, 1856; total eclipses from October 25, 1874 through July 26, 2325; and a second set of partial eclipses from August 7, 2343 through November 12, 2505. The series ends at member 72 as a penumbral eclipse on May 28, 2830.
The longest duration of totality will be produced by member 38 at 100 minutes, 23 seconds on May 22, 2217. All eclipses in this series occur at the Moon’s ascending node of orbit.[6]
Greatest | First | |||
---|---|---|---|---|
The greatest eclipse of the series will occur on 2217 May 22, lasting 100 minutes, 23 seconds.[7] | Penumbral | Partial | Total | Central |
1550 Apr 01 |
1694 Jul 07 |
1874 Oct 25 |
2127 Mar 28 | |
Last | ||||
Central | Total | Partial | Penumbral | |
2289 Jul 04 |
2325 Jul 26 |
2505 Nov 12 |
2830 May 28 |
Eclipses are tabulated in three columns; every third eclipse in the same column is one exeligmos apart, so they all cast shadows over approximately the same parts of the Earth.
Series members 15–37 occur between 1801 and 2200: | |||||
---|---|---|---|---|---|
15 | 16 | 17 | |||
1802 Sep 11 | 1820 Sep 22 | 1838 Oct 03 | |||
18 | 19 | 20 | |||
1856 Oct 13 | 1874 Oct 25 | 1892 Nov 04 | |||
21 | 22 | 23 | |||
1910 Nov 17 | 1928 Nov 27 | 1946 Dec 08 | |||
24 | 25 | 26 | |||
1964 Dec 19 | 1982 Dec 30 | 2001 Jan 09 | |||
27 | 28 | 29 | |||
2019 Jan 21 | 2037 Jan 31 | 2055 Feb 11 | |||
30 | 31 | 32 | |||
2073 Feb 22 | 2091 Mar 05 | 2109 Mar 17 | |||
33 | 34 | 35 | |||
2127 Mar 28 | 2145 Apr 07 | 2163 Apr 19 | |||
36 | 37 | ||||
2181 Apr 29 | 2199 May 10 | ||||
Tritos series
This eclipse is a part of a tritos cycle, repeating at alternating nodes every 135 synodic months (≈ 3986.63 days, or 11 years minus 1 month). Their appearance and longitude are irregular due to a lack of synchronization with the anomalistic month (period of perigee), but groupings of 3 tritos cycles (≈ 33 years minus 3 months) come close (≈ 434.044 anomalistic months), so eclipses are similar in these groupings.
Series members between 1801 and 2200 | |||||||||
---|---|---|---|---|---|---|---|---|---|
1807 Nov 15 (Saros 113) |
1818 Oct 14 (Saros 114) |
1829 Sep 13 (Saros 115) |
1840 Aug 13 (Saros 116) |
1851 Jul 13 (Saros 117) | |||||
1862 Jun 12 (Saros 118) |
1873 May 12 (Saros 119) |
1884 Apr 10 (Saros 120) |
1895 Mar 11 (Saros 121) |
1906 Feb 09 (Saros 122) | |||||
1917 Jan 08 (Saros 123) |
1927 Dec 08 (Saros 124) |
1938 Nov 07 (Saros 125) |
1949 Oct 07 (Saros 126) |
1960 Sep 05 (Saros 127) | |||||
1971 Aug 06 (Saros 128) |
1982 Jul 06 (Saros 129) |
1993 Jun 04 (Saros 130) |
2004 May 04 (Saros 131) |
2015 Apr 04 (Saros 132) | |||||
2026 Mar 03 (Saros 133) |
2037 Jan 31 (Saros 134) |
2048 Jan 01 (Saros 135) |
2058 Nov 30 (Saros 136) |
2069 Oct 30 (Saros 137) | |||||
2080 Sep 29 (Saros 138) |
2091 Aug 29 (Saros 139) |
2102 Jul 30 (Saros 140) |
2113 Jun 29 (Saros 141) |
2124 May 28 (Saros 142) | |||||
2135 Apr 28 (Saros 143) |
2146 Mar 28 (Saros 144) |
2157 Feb 24 (Saros 145) |
2168 Jan 24 (Saros 146) |
2178 Dec 24 (Saros 147) | |||||
2189 Nov 22 (Saros 148) |
2200 Oct 23 (Saros 149) | ||||||||
Half-Saros cycle
A lunar eclipse will be preceded and followed by solar eclipses by 9 years and 5.5 days (a half saros).[8] This lunar eclipse is related to two total solar eclipses of Solar Saros 141.
January 26, 2028 | February 5, 2046 |
---|---|
See also
Notes
- ^ "January 31–February 1, 2037 Total Lunar Eclipse (Blood Moon)". timeanddate. Retrieved 29 November 2024.
- ^ "Moon Distances for London, United Kingdom, England". timeanddate. Retrieved 29 November 2024.
- ^ "Total Lunar Eclipse of 2037 Jan 31" (PDF). NASA. Retrieved 29 November 2024.
- ^ "Total Lunar Eclipse of 2037 Jan 31". EclipseWise.com. Retrieved 29 November 2024.
- ^ van Gent, R.H. "Solar- and Lunar-Eclipse Predictions from Antiquity to the Present". A Catalogue of Eclipse Cycles. Utrecht University. Retrieved 6 October 2018.
- ^ "NASA - Catalog of Lunar Eclipses of Saros 134". eclipse.gsfc.nasa.gov.
- ^ Listing of Eclipses of series 134
- ^ Mathematical Astronomy Morsels, Jean Meeus, p.110, Chapter 18, The half-saros
External links
- 2037 Jan 31 chart: Eclipse Predictions by Fred Espenak, NASA/GSFC