Gold chalcogenides
Gold chalcogenides are compounds formed between gold and one of the chalcogens, elements from group 16 of the periodic table: oxygen, sulfur, selenium, or tellurium.
- Gold(III) oxide, Au2O3. Decomposes into gold and oxygen above 160 °C, and dissolves in concentrated alkalis to form solutions which probably contain the [Au(OH)4]− ion
- Gold(I) sulfide, Au2S. Formed by reaction of hydrogen sulfide with gold(I) compounds.
- Gold(III) sulfide, Au2S3, claimed material but unsubstantiated.
- Gold tellurides: Au2Te3, Au3Te5, and AuTe2 (approximate formulas) are known as non-stoichiometric compounds. They show metallic conductivity. Au3Te5 is a superconductor at 1.62 K.[1]
Gold telluride minerals, such as calaverite and krennerite (AuTe2), petzite (Ag3AuTe2), and sylvanite (AgAuTe2), are minor ores of gold (and tellurium). See telluride minerals for more information.
References
- ^ Luo, H.L.; Merriam, M.F.; Hamilton, D.C. (1964). "Superconducting Metastable Compounds". Science. 145 (3632): 581–583. Bibcode:1964Sci...145..581L. doi:10.1126/science.145.3632.581. PMID 17735806. S2CID 41529555.
- Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 978-0-08-037941-8.