English: This figure demonstrates the central limit theorem. It illustrates that increasing sample sizes result in sample means which are more closely distributed about the population mean. It also compares the observed distributions with the distributions that would be expected for a normalized Gaussian distribution, and shows the reduced chi-squared values that quantify the goodness of the fit (the fit is good if the reduced chi-squared value is less than or approximately equal to one).
to share – to copy, distribute and transmit the work
to remix – to adapt the work
Under the following conditions:
attribution – You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.
share alike – If you remix, transform, or build upon the material, you must distribute your contributions under the same or compatible license as the original.
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled GNU Free Documentation License.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue
This graph image could be re-created using vector graphics as an SVG file. This has several advantages; see Commons:Media for cleanup for more information. If an SVG form of this image is available, please upload it and afterwards replace this template with {{vector version available|new image name}}.
It is recommended to name the SVG file “Empirical CLT - Figure - 040711.svg”—then the template Vector version available (or Vva) does not need the new image name parameter.
Captions
Add a one-line explanation of what this file represents
{{Information |Description ={{en|1=This figure demonstrates the central limit theorem. It illustrates that increasing sample sizes result in sample means which are more closely distributed about the population mean. It also compares the observed dist