Much interest in dysbindin has arisen through pedigree-based family-association studies of families with a history of schizophrenia, where a strong association was found between expression of a particular dysbindin allele and a clinical expression of schizophrenia.[6] However, the genetic link between dysbindin and schizophrenia has not been established in all the case control samples tested and this implies that there are different genetic subtypes of schizophrenia with different disease allele frequencies in different populations. This phenomenon is called genetic locus heterogeneity and is typical of all common disorders with a strong genetic component. A further complication is that it is highly likely that there are several or many different mutations within the dysbindin gene that are responsible for schizophrenia. This complexity is called
disease allele heterogeneity and is a further reason that genetic associations are found with different markers in the dysbindin gene when different samples are studied.
Genetically caused dysbindin-related mechanisms causing brain dysfunction are not fully known, but in one study, schizophrenic patients carrying the high-risk haplotype demonstrated visual processing deficits.[7] In another work, damping down the DTNBP1 expression led to an increase in cell surface dopamine D2-receptor levels.[8]