Eisspeedway

Catalan solid

Set of Catalan solids
The rhombic dodecahedron's construction, the dual polyhedron of a cuboctahedron, by Dorman Luke construction

The Catalan solids are the dual polyhedra of Archimedean solids. The Archimedean solids are thirteen highly-symmetric polyhedra with regular faces and symmetric vertices.[1] The faces of the Catalan solids correspond by duality to the vertices of by Archimedean solids, and vice versa.[2] One way to construct the Catalan solids is by using the Dorman Luke construction.[3]

The Catalan solids are face-transitive or isohedral meaning that their faces are symmetric to one another, but they are not vertex-transitive because their vertices are not symmetric. Their dual, the Archimedean solids, are vertex-transitive but not face-transitive. Each Catalan solid has constant dihedral angles, meaning the angle between any two adjacent faces is the same.[1] Additionally, two Catalan solids, the rhombic dodecahedron and rhombic triacontahedron, are edge-transitive, meaning their edges are symmetric to each other.[citation needed] Some Catalan solids were discovered by Johannes Kepler during his study of zonohedra, and Eugene Catalan completed the list of the thirteen solids in 1865.[4]

Two Catalan solids, the pentagonal icositetrahedron and the pentagonal hexecontahedron, are chiral, meaning that these two solids are not their own mirror images. They are dual to the snub cube and snub dodecahedron respectively, which are also chiral.

Eleven of the thirteen Catalan solids are known to have the Rupert property that a copy of the same solid can be passed through a hole in the solid.[5]

The thirteen Catalan solids
Name Image Faces Edges Vertices Dihedral angle[6] Point group
triakis tetrahedron Triakis tetrahedron 12 isosceles triangles 18 8 129.521° Td
rhombic dodecahedron Rhombic dodecahedron 12 rhombi 24 14 120° Oh
triakis octahedron Triakis octahedron 24 isosceles triangles 36 14 147.350° Oh
tetrakis hexahedron Tetrakis hexahedron 24 isosceles triangles 36 14 143.130° Oh
deltoidal icositetrahedron Deltoidal icositetrahedron 24 kites 48 26 138.118° Oh
disdyakis dodecahedron Disdyakis dodecahedron 48 scalene triangles 72 26 155.082° Oh
pentagonal icositetrahedron Pentagonal icositetrahedron (Ccw) 24 pentagons 60 38 136.309° O
rhombic triacontahedron Rhombic triacontahedron 30 rhombi 60 32 144° Ih
triakis icosahedron Triakis icosahedron 60 isosceles triangles 90 32 160.613° Ih
pentakis dodecahedron Pentakis dodecahedron 60 isosceles triangles 90 32 156.719° Ih
deltoidal hexecontahedron Deltoidal hexecontahedron 60 kites 120 62 154.121° Ih
disdyakis triacontahedron Disdyakis triacontahedron 120 scalene triangles 180 62 164.888° Ih
pentagonal hexecontahedron Pentagonal hexecontahedron (Ccw) 60 pentagons 150 92 153.179° I

References

Footnotes

  1. ^ a b Diudea (2018), p. 39.
  2. ^ Wenninger (1983), p. 1, Basic notions about stellation and duality.
  3. ^
  4. ^
  5. ^ Fredriksson (2024).
  6. ^ Williams (1979).

Works cited