Satz von Wolstenholme
Der Satz von Wolstenholme (nach Joseph Wolstenholme) ist eine Aussage aus dem mathematischen Teilgebiet der Zahlentheorie. Er lautet:
Ist eine Primzahl, so hat die harmonische Zahl
einen durch teilbaren Zähler (in vollständig gekürzter und daher auch in jeder anderen Darstellung als Quotient zweier ganzer Zahlen).[1][2]
Beispiele, andere Formulierungen, Folgerungen
Zur Veranschaulichung einige Beispiele:
- der Zähler ist durch teilbar.
- der Zähler ist durch teilbar.
Der Satz von Wolstenholme ist äquivalent zu der Aussage, dass der Zähler von
durch teilbar ist.[3]
Eine Folgerung aus dem Satz ist die Kongruenz
die auch in der Form
geschrieben werden kann.
Wolstenholme-Primzahlen
Eine Wolstenholme-Primzahl p ist eine Primzahl, die eine stärkere Fassung des Satzes von Wolstenholme erfüllt, genauer: die eine der folgenden äquivalenten Bedingungen erfüllt:[4]
- Der Zähler von
- ist durch teilbar.
- Der Zähler von
- ist durch teilbar.
- Es gilt die Kongruenz
- Es gilt die Kongruenz
- Der Zähler der Bernoulli-Zahl ist durch teilbar.
Die beiden bisher einzigen bekannten Wolstenholme-Primzahlen sind 16843 (Selfridge und Pollack 1964)[5] und 2124679 (Buhler, Crandall, Ernvall und Metsänkylä 1993).[6] Jede weitere Wolstenholme-Primzahl müsste größer als 109 sein.[7] Es wurde die Vermutung aufgestellt, dass unendlich viele Wolstenholme-Primzahlen existieren, und zwar etwa unterhalb (McIntosh 1995).[8]
Verwandter Begriff
Betrachtet man nur Summanden mit ungeradem Nenner, also die Summe
für eine Primzahl , so ist der Zähler genau dann durch teilbar, wenn die stärkere Form
des Satzes von Euler-Fermat gilt.[9] Derartige Primzahlen heißen Wieferich-Primzahlen.
Geschichte
Aus dem Satz von Wilson folgt die Kongruenz
für jede Primzahl und jede natürliche Zahl
Charles Babbage bewies 1819[10] die Kongruenz
für jede Primzahl
Joseph Wolstenholme bewies 1862[1] die Kongruenz
für jede Primzahl
Literatur
- G. H. Hardy, E. M. Wright: An introduction to the theory of numbers. 6. Auflage. Oxford University Press, Oxford 2008, ISBN 978-0-19-921985-8 (englisch; revidiert von D. R. Heath-Brown und J. H. Silverman).
Weblinks
- The Prime Glossary: Wolstenholme prime (englisch)
- Eric W. Weisstein: Wolstenholme’s Theorem. In: MathWorld (englisch).
Einzelnachweise
- ↑ a b J. Wolstenholme: On certain properties of prime numbers. In: The quarterly journal of pure and applied mathematics 5. 1862, S. 35–39 (englisch).
- ↑ Hardy, Wright: An introduction to the theory of numbers. 2008, S. 112 (englisch; Theorem 115).
- ↑ Hardy, Wright: An introduction to the theory of numbers. 2008, S. 114 (englisch; Theorem 117).
- ↑ Anthony Gardiner: Four problems on prime power divisibility. In: The American Mathematical Monthly 95. Dezember 1988, S. 926–931 (englisch).
- ↑ J. L. Selfridge, B. W. Pollack: Fermat’s last theorem is true for any exponent up to 25,000. In: Notices of the AMS 11. 1964, S. 97 (englisch; nur Zusammenfassung; 16843 nicht ausdrücklich angegeben).
- ↑ J. Buhler, R. Crandall, R. Ernvall, T. Metsänkylä: Irregular primes and cyclotomic invariants to four million. In: Mathematics of Computation 61. Juli 1993, S. 151–153 (englisch).
- ↑ Richard J. McIntosh, Eric L. Roettger: A search for Fibonacci-Wieferich and Wolstenholme primes. (PDF; 151 kB). In: Mathematics of Computation, 76, Oktober 2007, S. 2087–2094 (englisch).
- ↑ Richard J. McIntosh: On the converse of Wolstenholme’s theorem. (PDF; 190 kB). In: Acta Arithmetica, 71, 1995, S. 381–389 (englisch).
- ↑ Hardy, Wright: An introduction to the theory of numbers. 2008, S. 135 (englisch; Theorem 132).
- ↑ Charles Babbage: Demonstration of a theorem relating to prime numbers. In: The Edinburgh philosophical journal 1. 1819, S. 46–49 (englisch; „n+1.n+2.n+3...“ bedeutet „(n+1)(n+2)(n+3)…“; die Umkehrung wird auch behauptet: „otherwise it is not“, aber nicht bewiesen und ist falsch für Quadrate von Wolstenholme-Primzahlen).