Benutzer:Majus012/Baustelle

Tanker

Tanker-spezifische Einrichtungen

  • Ladungssystem, Leitungen, Pumpen
  • Inertgasanlage, gasdichte Tanks, Dampfdruck der Ladung, pv's , Gaspendelanlage
  • feste Gasmessanlage
  • Notschleppvorrichtungen[1], vorgeschrieben für alle Tanker über 20.000 DWT[2]
  • Fest installiertes Feuerlöschsystem an Deck

Öltanker, zusätzlich:

  • Tankwaschanlage
  • ODME (Überwachungs- und Kontrollsystem für das Einleiten von Öl)
  • ggf. Heizsystem

Klassifikation von Tankern

https://www.marineinsight.com/types-of-ships/different-types-of-tankers-extensive-classification-of-tanker-ships/

Klassifizierung nach Schiffsmaßen

Wie andere Schiffe auch, können Tanker in Klassen nach Schiffsmaßen eingeteilt werden. Dabei ergeben sich aus den Beschränkungen durch Wasserstraßen jeweilige Abmessungsklassen. Bekannte Vertreter sind z.B. die Panamax oder die Suezmax Klasse. Für den Ladungstransport ist insbesondere die maximal mögliche Zuladung durch verfügbares Laderaumvolumen oder der Tragfähigkeit ein Klassifizierungsmerkmal. Die Gruppierung kann bei diesen Merkmalen recht willkürlich erfolgen, allerdings setzte der Ölkonzern Shell mit dem "average freight rate assessment" (AFRA) System einen häufig genutzten Industriestandart.[3]

Klassifizierung nach Rumpfkonstruktion

Einzelhüllentanker
Doppelhüllentanker
  • Einfache Hülle
  • Doppelhülle bei gleicher Laderaumgröße -> größerer Auftriebskörper -> mehr Freibord

Zwei-Hüllen-Tanker oder Doppelhüllentanker

Doppelhüllentanker „Seaconger“ der Reederei German Tanker Shipping auf der Nordsee

Ein Zwei-Hüllen-Tanker ist ein Transportschiff zum Transport flüssiger Güter, das eine doppelte Außenhülle aufweist (Doppelhüllenschiff). Der Abstand der beiden Hüllen zueinander beträgt in der Regel 2–3 Meter.

Im Gegensatz zu herkömmlichen Ein-Hüllen-Tankern sollen diese bei sachgemäßem Betrieb eine höhere Sicherheit gegen das Auslaufen des Transportgutes bieten. Die Doppelhülle der Tanker muss allerdings als Ballasttank nutzbar sein, um das Schiff – entsprechend der aktuellen Beladung – trimmen zu können (als Ballast wird bei Schiffen Seewasser verwendet, welches in die entsprechenden Tanks gepumpt wird).

Durch das Seewasser plus Luftsauerstoff sind die Innenwände der Hülle einer extremen Korrosionsgefahr ausgesetzt, so dass regelmäßige Kontrollen und Erneuerungen des Schutzanstrichs erforderlich sind, damit die Zwei-Hüllen-Tanker wirklich die erhöhte Sicherheit bieten können.

Nach der Katastrophe der Exxon Valdez im März 1989 hat die Internationale Seeschifffahrts-Organisation (IMO) als Regulierungsbehörde beschlossen, dass alle Tanker, die ab 1996 gebaut werden und über 5000 Tonnen Transportgewicht haben, mit einer Doppelhülle ausgestattet sein müssen. Nach der Erika-Katastrophe (1999) hat die IMO beschlossen, dass ab 2015 nur noch Öltanker mit doppelwandigen Außenhüllen die Weltmeere befahren dürfen. Alternative Konstruktionen sind grundsätzlich erlaubt, sofern sie mindestens denselben Schutz bieten.

Allerdings verbietet die US Küstenwache [4]

Ursprünglich wurden doppelwandige Tanker nicht aus Sicherheitsgründen entwickelt, sondern um Energie (und damit Kosten) beim Transport von heißen Gütern, wie Bitumen, Melasse oder Paraffin zu sparen. Denn eine (luft- oder inertgasgefüllte) Doppelhülle bietet eine gute Wärmedämmung.


Zwischendeck

Alternative Konstruktionen & Hydrostatisches Gleichgewicht

Rechtliche Klassifizierung

Für international verkehrende Seeschiffe sind durch die IMO einheitliche rechtliche Vorgaben vereinbart worden. Ein Schiff kann auch für mehrere Güter zugelassen werden, die jeweiligen Bestimmungen sind dann kumulativ einzuhalten. Soll ein Schiff flüssige Güter transportieren, die per Definition nicht in die nachfolgenden Abschnitte fallen, gilt es rechtlich gesehen nicht als Tanker. Beispielhaft ist hier ein Fruchtsafttanker zu nennen; auch wenn er technisch wie ein Tanker funktioniert, müssen nur die üblichen Regeln für Frachtschiffe eingehalten werden.

Öltanker

MARPOL Übereinkommen Anlage I jegliche Form von Erdöl, verarbeitet oder nicht, sofern sie nicht in MARPOL Anlage II aufgeführt werden.

Kap 1 Reg 1 Zulassung für den Transport von Rohöl oder Ölprodukten bzw. Zulassung als Tank Massengutschiff

Als Ölprodukt zählen alle aus Rohöl hergestellten Produkte, wie z.B. die Leicht & Mitteldestillate Benzin und Diesel, als auch Vakuumdestillationsrückstände wie Bitumen. Während rechtlich keine weitere Unterscheidung stattfindet, benötigen manche Produkte eine bestimmte Ladungsfürsorge. Um Ausflockungen zu vermeiden bzw. die Pumpfähigkeit zu erhalten, kann es nötig werden die Ladung auf einer Mindesttemperatur zu halten. So unterscheiden sich Asphalttanker zu anderen Produkten- und Chemikalientankern insbesondere durch ein ausgeprägteres Heizsystem und einer besseren Tankisolierung.

Chemietanker

MARPOL Anlage II

https://www.deutsche-flagge.de/de/umweltschutz/oel/oel

Der IBC Code definiert drei Bautypen von Chemietankern, die die Gefährdung der zu transportierenden Ladung absteigend widerspiegelt:[5]

  • Der Typ 1 ist für die Beförderung von Erzeugnissen bestimmt, von denen sehr große Umwelt- und Sicherheitsgefahren ausgehen, die ein Höchstmaß an Vorbeugungsmaßnahmen erfordern, um ein Entweichen dieser Ladung zu verhindern.
  • Der Typ 2 ist für die Beförderung von Erzeugnissen mit besonders schweren Umwelt- und Sicherheitsrisiken bestimmt ist, die umfangreiche Vorbeugungsmaßnahmen erfordern, um ein Entweichen dieser Ladung zu verhindern.
  • Der Typ 3 ist für die Beförderung von Erzeugnissen bestimmt, die hinreichend schwere Umwelt- und Sicherheitsrisiken bergen, die einen mäßigen Grad an Eindämmung erfordern, um die Überlebensfähigkeit im beschädigten Zustand zu erhöhen.

Für welche Chemikalien das jeweilige Schiff zugelassen ist, wird im International Certificate of Fitness for the Carriage of Dangerous Chemicals in Bulk explizit festgehalten.[6]

Gastanker

IGC Code

Antrieb von Wasserfahrzeugen

Der Antrieb umfasst alle Einrichtungen für den Bewegung eines Wasserfahrzeuges. Bei maschinellen Anlagen können diese in das Propulsionsorgan (Arbeitsmaschine) und die Energie bereitstellende Kraftmaschine kategorisiert werden. Unter Umständen wird die Antriebsenergie aus der primären Energiequelle über eine oder mehrere Übertragungsstufen umgewandelt (mechanisch, elektrisch, hydraulisch) Gewisse Propulsionsorgane, wie der Voith-Schneider-Antrieb, vereinen zudem Funktionen des Vortriebs und Manövrieren.

Nicht & einfach mechanische Antriebe

Kajak

Die Muskelkraft stellt eine der einfachsten Antriebsformen dar, das Fahrzeug kann dabei über verschiedenen Umsetzungsarten und einfachen Hilfsmitteln, sowohl von sich aus (z.B. durch (Tret-)kurbeln, staken, rudern oder paddeln) als auch von außen (z.B. durch Treideln), bewegt werden.

Seil-/Kettenfähren können durch reine Muskelkraft bedient werden, häufiger geschieht dies jedoch über einen mechanischen Antrieb auf dem Fahrzeug oder an seiner Anlegestelle.

Nutzung der Umwelt

Rollfähre
Segelschiff

Natürliche auftretende Strömungen können ebenfalls über einfache Hilfsmittel genutzt werden. Gierseilfähren bzw. Rollfähren nutzen zur Bewegung die Flussströmung. Um den benötigten Anstellwinkel der Fähre zum Fluss zu verändern werden zumeist Winden eingesetzt.

Wind kann genutzt werden, um durch den Strömungswiderstand und den dynamischen Auftrieb von Segeln oder Zugdrachen eine Antriebskraft bereitzustellen. Zugdrachensysteme wurden von der Firma SkySails entwickelt. Die Produktion wurde allerdings eingestellt und installierte Anlagen zurückgebaut. Eine in den 1980er-Jahren durchgeführte Studie untersuchte bereits den Einsatz von Windenergie zur Antriebsunterstützung von Handelsschiffen und favorisierte dabei die Verwendung von festen Tragflügeln.[7] Klassische Segel bestehen aus einem flexiblen Natur- oder Kunststoffmaterial, benötigen ein umfangreiches Stehendes & laufendes Gut und eine regelmässige Anpassung an die Windverhältnisse. Tragflächensegel (englisch Hard sail) haben eine deutlich geringere Komplexität, konnten sich kommerziell jedoch lange nicht etablieren. Die japanischen Reederei Mitsui O.S.K. Lines setzt das Hardsail seit Oktober 2022 auf dem Massengutfrachter "Shofu Maru" ein[8] und plant sie auch auf weiteren Neubauten zu installieren.[9]

Flettner Rotoren nutzen ebenfalls den Wind, diese müssen jedoch aktiv in Rotation gehalten werden um einen Antriebseffekt über dem einfachen Störungswiederstand zu bieten. Insbesondere auf Windkursen zwischen Raumwinds und am Wind ersetzt die benötigte Leistung für die Drehbewegung ein vielfaches der ersetzten Vortriebsleistung[10]

Sonnenstrahlung kann durch den Einsatz von Photovoltaik zu elektrischer Energie gewandelt werden. Die unbeständige Verfügbarkeit erlaubt, ohne einen Energiespeicher, nur den ergänzenden Betrieb zu anderen Stromerzeugern. Das derzeit größte solar betriebene Wasserfahrzeug ist der Katamaran Tûranor PlanetSolar. Aufgrund der nur begrenzt verfügbaren Nutzflächen für P/V-Installationen und damit verbundenen begrenzten Leistung sind diese Systeme auch auf kommerziellen Anwendungen wie Solarfähren bisher nur zur Erhöhung des Autakiegrads im Einsatz.

Kraftmaschinen

Die klassischen Vertreter der Kraftmaschinen sind Wärmekraftmaschinen wie die Kolbendampfmaschine, die Dampfturbine, der Verbrennungsmotor und die Gasturbine, sie alle stellen mechanische Energie in einer Drehbewegung bereit.

Dampferzeuger stellen den Dampf für die Dampfverbraucher bereit. Dies kann durch Befeuerung mit verschiedensten Brennstoffen in einem Dampfkessel erfolgen. Kernreaktoren werden vereinzelt auf Eisbrechern und militärischen Fahrzeugen eingesetzt, diese Fahrzeuge werden auch als Reaktorschiff bezeichnet.

Zur Erhöhung der Gesamteffizienz kann Abwärme aus anderen Anlagen nach dem Prinzip der Kraft-Wärme-Kopplung zur Dampfproduktion benutzt werden. Dies geschieht insbesondere durch Abgasnutzung über den Einsatz von Abgaskesseln.

Trotz ihres Namens können Schiffsdieselmotoren für eine Vielzahl von Kraftstoffen ausgelegt werden, ihre Bezeichnung bezieht sich lediglich auf das Arbeitsprinzip des Motors. Weit verbreitete Schiffstreibstoffe sind Produkte der Erdölraffinerie wie Schweröl oder Marinedieselöl. Rechtlichen Vorgaben gegen Emissionen durch die Schifffahrt haben zur Entwicklung und Einführung höherwertiger Kraftstoffe, alternativer Kraftstoffe wie LNG und der Abgasreinigung geführt. Aktuelle Forschungen und Pilotprojekte arbeiten an alternative Antriebstechniken, dem Einsatz von Power-to-Fuel Kraftstoffen wie z.B. Methanol, Wasserstoff oder Ammoniak. Diese können sowohl in Verbrennungsmotoren als auch in einer Brennstoffzelle eingesetzt werden.

Ein Elektromotor kann, als rotierende elektrische Maschine, sowohl als Motor für eine Arbeitsmaschine fungieren, als auch Arbeitsmaschine sein um als Generator elektrische Energie bereitzustellen. Diese elektrische Energie kann sowohl für einen Dieselelektrischen Antrieb als auch von anderen Schiffshilfssystemen genutzt werden. Sind Antrieb und Hilfssysteme elektrisch miteinander verbunden, wird dies als integrierter elektrischer Antrieb bezeichnet.

Propulsionsorgane

Der maschinelle Vortrieb eines Fahrzeuges wird durch eine Strömungsmaschine verursacht. Der bekanntesten Vertreter ist dabei der Propeller als Weiterentwicklung der Archimedischen Schraube. Ihm vorher ging bereits die Verwendung von Schaufelrädern. Diese werden zwar meist mit dem Aufkommen von Dampfschiffen assoziiert, jedoch lassen sich erste Ideen und Umsetzungen auf wesentlich frühere Zeiten zurückführen.

Alle Propulsionsorgane haben gemein, dass Sie Schub erzeugen. Dabei muss dieser nicht zwangsweise durch die Bewegung von Wasser erzeugt werden, ein Propeller kann ebenfalls als Luftschraube ausgelegt werden. Zur Verwendungen kommt dies bei Spezialanwendungen wie Sumpfbooten oder Luftkissenfahrzeugen, bei denen aus betrieblichen Gründen ein Propeller im Wasser unerwünscht ist.

Der Propeller wird über die Wellenanlage mit dem Antriebsmotor verbunden. Die Wellenanlage leitet die am Propeller entstehenden Kräfte in den Fahrzeugkörper ein und verhindert das Eindringen von Wasser. Eine solche Konfiguration wir auch als Innenbord-Installation bezeichnet. Außenbordmotoren hingegen werden als komplette Antriebseinheit außen am Fahrzeug befestigt und benötigen daher keine Durchführung durch den Rumpf.

Ein einzelner, fest ausgerichteter Propeller erzeugt nahezu nur Schub in Längsrichtung und bietet damit allein keine Möglichkeit das Fahrzeug zu manövrieren. Daher wird er in Kombination mit einem Ruder ausgeführt, dass durch Ablenkung der Strömung eine seitliche Kraft erzeugen kann. Befinden sich mindestens zwei Propeller nebeneinanderliegend, kann auch durch unterschiedlichen starken Schub manövriert werden.

Beim Wasserstrahlantrieb liegt der Propeller nicht außerhalb des Rumpfes, sondern innen liegend in einer Pumpeneinheit. Durch den Rumpf tritt lediglich ein Ansaug- und Auslasskanal. Bei diesem System wird kein Ruder benötigt, da der Wasserstrahl über eine steuerbare Düse austritt.

Die Funktionen Schub zu erzeugen und gleichzeitig in eine beliebige Richtung zu lenken, werden durch eine Reihe von von Anlagen vereint. Diese werden unter dem Begriff Azimut-Strahler zusammengefasst, da sie sich gänzlich um Ihre Hochachse drehen können. Die bekanntesten Vertreter sind dabei der Ruderpropeller und die Propellergondel. Während sich beim Ruderpropeller der Antriebsmotor im Rumpf des Fahrzeugs befindet, ist dieser bei der Propellergondel mit integriert. Weitere Anlagen sind der Voith-Schneider-Antrieb sowie der Pump-Jet. Der Veth-Jet bildet je nach Konfiguration eine Art Hybrid aus Querstrahlruder und Wasserstrahlantrieb.

Zu den technisch realisierten Antrieben, die jedoch wegen geringer Effizienz kaum genutzt werden, zählen der Raketenantrieb, welcher gelegentlich bei Torpedos anzutreffen ist, und der Magnetohydrodynamische Antrieb.

Siehe auch

Portal: Schifffahrt – Übersicht zu Wikipedia-Inhalten zum Thema Schifffahrt

Einzelnachweise

  1. Emergency towing system (ETS), also emergency towing gear. Abgerufen am 3. April 2023 (englisch).
  2. International Maritime Organization: SOLAS consolidated text of the International Convention for the Safety of Life at Sea, 1974, and its Protocol of 1988 : articles, annexes and certificates : incorporating all amendments in effect from 1 January 2020. Consolidated edition 2020, seventh edition Auflage. London 2020, ISBN 92-801-1690-8, II-1, Regel 3-4 1.
  3. Classification tankers by deadweight — Shipshub. Abgerufen am 4. April 2023.
  4. Oversight of the U.S. Role in the International Maritime Organization. Abgerufen am 4. April 2023.
  5. International Code for the Construction and Equipment of Ships carrying Dangerous Chemicals in Bulk (IBC Code). Abgerufen am 3. April 2023.
  6. Chemical Tankers - Maritimeknowhow. Abgerufen am 3. April 2023.
  7. Wind Ship Development Corporation, Lloyd Bergeson, United States: Wind Propulsion for ships of the American merchant marine. U.S. Dept. of Commerce, Maritime Administration, Office of Maritime Technology : Reproduced and sold by the National Technical Information Service, Washington, D.C. : Springfield, Va. 1981 (hathitrust.org [abgerufen am 21. März 2023]).
  8. Projekt Wind Challenger - Japanischer Kohlefrachter setzt Hightech-Segel ein. 30. Oktober 2022, abgerufen am 21. März 2023 (deutsch).
  9. MOL Signs Deal to Build 2nd Bulk Carrier Equipped with 'Wind Challenger' Hard Sail System - Reducing Environmental Impact by Using Wind as Vessel's Propulsive Force - | Mitsui O.S.K. Lines. Abgerufen am 21. März 2023 (englisch).
  10. Spinning metal sails could slash fuel consumption, emissions on cargo ships. 28. März 2021, doi:10.1126/science.aap8915 (science.org [abgerufen am 11. März 2023]).

Kategorie:Schiffsantrieb